The Chroma Software System for Lattice QCD

B. Joo (UKQCD, Edinburgh), R. G. Edwards (LHPC, JLAB)

Abstract

We describe aspects of the Chroma software system for lattice QCD calculations. Chroma 1s an open source

C++ based software system developed using the software infrastructure of the U.S. SciDAC initiative.
The system uses SC1IDAC packages such as QDP++ for data parallel operations, QMP for parallel

communications and QIO for binary I/0. XML I/O 1s provided by wrappers around the open source libxml2

library. Chroma interfaces with output from the BAGEL assembler generator for optimised lattice fermion

kernels on some architectures. The code can be run on workstations, clusters and the QCDOC supercomputer.:
The majority of the development effort was carried out at the JLAB with strong collaboration from UKQCD.
As a case study we briefly describe its use 1n our algorithmic investigations of the Overlap Fermion Matrix.

Introduction

We present the Chroma software system [1] for lattice QCD (LQCD) calculations. Chroma

aims to provide a computational LQCD toolbox which is flexible, portable and efficient on
a wide range of architectures from desktop workstations to large parallel computers in-
cluding clusters, commercially available machines and also new architectures such as the
QCDOC.

Primary development on Chroma started at the JLAB for the U.S. lattice community,
in particular the LHPC collaboration [2], using software from the U.S. SciDAC initiative
[3]. This effort has been joined by the UKQCD collaboration [4] who have been contribut-
ing to the SciDAC software effort on all levels. The result of this collaboration has not
only produced useful software but also highlights the benefits of large-scale international
collaboration and the open source development process.

In order to achieve the goals of flexibility, portability and efficiency Chroma relies on
several layers of SciIDAC and UKQCD software.

The SciDAC Software Hierarchy

Towards the end of 2000, the U.S. Lattice community embarked on an ambitious project
through the U.S. SciDAC initiative to standardise a set of software components in order to
allow the effective exploitation of computing resources for lattice QCD. Three main levels
of software infrastructure were defined

QCD Message Passing (QMP): This layer provides a message passing API that contains
the communications primitives needed to perform lattice QCD calculations. It has been
designed to take advantage of the specialised communication hardware of emerging
architectures, such as the Serial Communications Unit (SCU) of the QCDOC and the
specialised capabilities of Myrinet Network devices.

Level 1 — QCD Linear Algebra (QLA): The QLA layer defines operations to be per-
formed at each site of the lattice. These primitives include SU (3) matrix multiplications
and multiplication of colour vectors by SU (3) matrices.

Level 2 — QCD Data Parallel (QDP): This layer provides lattice—wide operations such
as basic linear algebra for lattice—wide fields.

Level 3 — Special optimised software: This layer will provide portable interfaces
to highly optimised and machine—dependent pieces of code such as assembly—coded
Dslash operators or specialised solvers.

A recent addition to this hierarchy is the QCD I/O (QIO) sublayer which provides a record
oriented I/O API. The records are packaged with the LIME framework which is a descen-
dant of the Direct Internet Message Encapsulation (DIME) proposal devised originally
for web service attachments.

We illustrate the hierarchy in Fig. 1. Software for QMP, QLA, QDP and QIO are avail-
able from the SciDAC web site [3]. Chroma currently relies on the QMP layer, and a C++
implementation of the QDP layer called QDP++.

Wilson Dslash Operators (Pentium 4 SSE, QCDOC) Staggered Dslash Op (QCDOC)

Optimized Dirac Operators
Level 3 Sparse Matrix Inverters, etc
QDP (QCD Data Parallel) QIO
Lattice Wide Operations XML
Level 2 / Data Shifts LIME

C/C++ implementations (QDP/QDP-++)
Parallel using QMP

First Release:
Record Based Binary Files

(DL/\((DC”D[Jnear/Ugebna__Sﬁeyops) (Shnﬂarh)Eﬁhﬂfencapswbﬁon)

Level 1

/7

implemented over MPI, MVIA Gig-E, GM, QCDOC-SCU

QDP++

QDP++ is a C++ implementation of the QDP level of the SciDAC hierarchy,
which Chroma uses as its foundation. QDP++ defines lattice—wide types and allows
lattice—wide expressions. It has also been integrated with the QIO framework and
with the XPathReader and XMLWriter modules to provide XML based 1/0 (e.g.
for reading of parameters, or creating QCDML markup [7] in the future).

Lattice—Wide Types

QDP++ models the tensor product structure of LQCD objects through a series of
nested templates. E.g: the indices of lattice fermion fields can follow the structure:

sites @ spins ® colours ® complex ® type of complex components

QDP++ would model this through the following C++ templated type:

OLattice< PSpinVector< PColorVector< RComplex < PScalar < REAL> >, Nc >, Ns > >

where PScalar<REAL> is the type of the complex components. The constant
REAL is defined as either f1oat or double while Nc and Ns are the numbers
of spin and colour components. These constants are defined during configuration.

QDP++ operates on such types by recursing down the templates. To multiply the
above type by a scalar, one would first loop through the indices of the OLattice
type and for each one call the multiply operation for the PSpinVector type and
SO on.

The order of the templates is not fixed in principle. One could equally well
exchange the ordering of the indices in order to take advantage of particular parallel
architectures.

In order to save fingers and brains, the above type is usually aliased to a short-
hand C++ type using a t ypedef statement. The type above is usually referred to
asa LatticeFermion.

Lattice—Wide Operations, Expressions, PETE

By overriding operators in C++, QDP++ provides lattice—wide arithmetic. For
example the AXPY operation
24— axr+y

where z, x and y are lattice fermion fields and « is a scalar, would be coded as:
z = a*x + vy

where z, x and y are of type LatticeFermion and a is e.g.: a Real.

In order to eliminate temporaries in such expressions, QDP++ uses Portable Ex-
pression Template Extensions (PETE). The C++ binary operators are redefined to
transform the expression into an expression template type. On assignment, the
expression template and the left hand side are given as arguments to an evaluate()
function. This function now knows it has a three—operand operation to perform,
and has references to all 3 operands and the result. All this is done at compile time
through the template instantiation mechanism. We illustrate the main points of
the idea in Fig. 2.

Chroma

Code Base Content Overview

Chroma developed to service the current needs of the LHPC and UKQCD collabora-
tions, which have mostly included spectroscopy, decay constant, nucleon form factor and
structure function moment calculations. Another branch of development was related to the
investigation of chiral fermion actions. Hence the current version of the code contains Wil-
son, Domain Wall and Overlap fermion operators and numerous inverters to compute quark
propagators and sequential propagators. Code also exists to compute hadronic 2-point and
3-point correlation functions. A number of UKQCD researchers have also written an ASg-
TAD fermion operator, in the staggered library as well as code to compute disconnected
diagrams.

Factory Functions, Linear Operators, Generic Solvers

In order to support generic iterative solver algorithms Chroma defines an abstract linear
operator (LinearOperator) base class. Actual linear operators are derived from this
class and implement its virtual function interface. There are also fermion action (FermAct)
classes which provide factory functions to produce appropriate Dirac operators (see Fig. 3).
These Dirac operators use optimised Dslash routines under the hood where possible. The
linear operators can be given to templated inverters as input. These inverters are generic
in the sense that they can be used for a variety of fermion actions. The same Conjugate
Gradient (CG) code can be used for the Wilson action as for the Staggered and the Overlap
actions. We show the code for a CG Solver in Fig 4.

School of Physics
Particle Physics Theory

FermAct<LatticeFermion>: (LinearOperator<LatticeF ermion>

1inOp () >‘

L ZolotarevdDFermAct lovlapms |

(overlap—multi—shift)

Fig. 1: The SciDAC Software Hierarchy

Level 3 and BAGEL

Level 3 of the SciDAC hierarchy is not yet as mature as the other levels. Hence Chroma
uses optimised Dslash operators from a variety of sources. The Pentium 4 SSE assembler
versions used are the ones developed at the JLAB [35].

For RISC architectures such as the QCDOC and POWER based systems we have in-
terfaced to code produced by the BAGEL assembly generator developed by Peter Boyle
[6].

The BAGEL assembly generator produces highly optimised assembler kernels for RISC
microprocessors by modelling the CPU pipelines and taking into account the latencies and
execution times of the CPU functional units. By considering the bandwidth between the
CPU, cache and memory, BAGEL can also encode aggressive prefetching schemes result-
ing in extremely fast code.

While BAGEL is not SciDAC software, it is in fact a very versatile tool that can be used
to generate operators for SciDAC’s level 3. It can also be used to generate optimised code
at other levels of the hierarchy. The source code for BAGEL will be available for download
in the future.

Step 1: operator *(): (Real(alpha), Vector(x))

Returns Dressed Templated Type

v
ODPExpr< BinaryNode <OpMultiply, Real(alpha), Vector(x)>, Vector(result)>

V
Step 2: operator +() : (ODPExpr<...> , Vector(y))

Returns Dressed Templated Type

v

ODPExpr< BinaryNode< OpAdd,
BinaryNode<OpMultiply, Real(alpha), Vector(x)>,
Vector(y) >, Vector(result) >

|

Step 3: operator=() : (ODPExpr<..>) {
evaluate (QDPExprt<...> = *this), // *this is Vector(result)
return *this // Returns reference only

/

Fig. 2: Expression transformation a la PETE

QDP++ Optimisation

We can further specialise the evaluate() functions for specific expression tem-
plates, and make these call optimised subroutines, e.g. fast AXPY like functions.
This approach is in some sense of limited use, since only a few hand—picked ex-
pressions are optimised. However, in practice, only a small number of routines
(e.g. Level 1 BLAS) are of greatest utility and of most common use. To this end
we have optimised real and complex AXPY routines, inner products and vector
norm operations.

It may be possible to optimise more general expressions by applying PETE tech-
niques at all levels of our template hierarchy rather than just at the OLatt ice level
as we do now. This is current work in progress.

Fig. 3: Factory Functions produce Linear Operators for Overlap

Virtual Functions, Category Defaults

The linOp() factory function is an example of a virtual function defined in the base Fer-
mAct class. FermAct defines other virtual functions which derived classes may need to
implement (if they are pure virtual) or override. Examples of these are gprop() which
computes the quark propagator for a given action and dsdu() whose job is to compute the
fermionic force term for the action in a Molecular Dynamics evolution algorithm.

Virtual functions allow us to maintain the same look and feel across our fermion action
classes, to write generic algorithms and to provide default implementations in the base
classes (In the Aldor [8] language these would be called category default functions)

template<typename T>

void InvCGl_a (const LinearOperator<T>& A, const T& chi, Té& psi,
const Real& RsdCG, int MaxCG, inté& n_count)

{

const OrderedSubset& s = A.subset(); // Which part of vectors to operate on
Real rsd_sg = (RsdCG * RsdCG) * Real (norm2(chi,s)); // Target rel. residue
T tmpl; T r; // Temporary and residual vector

A(tmpl, psi, PLUS); // Work out chi - A psi_0

r[s] = chi - tmpl; // Work only on subset

T p;

pls] = r; // Conjugate search vector
Double cp = norm2(r, s); // Initial Residue

if (toBool(cp <= rsd_sq)) { // Catch RHS=0 case
n_count = 0; psi=zero;
return;

}

T ap; Real b; Double c; Complex a; Real d;

for(int k = 1; k <= MaxCG; ++k) { // CG Iterations start here
c = pj
A(ap, p, PLUS);
d = innerProductReal (p, ap, s); // < p , Ap >

a = Real(c)/d;
psi[s] += a * p;
ris] -=a * ap;
cp = norm2(r, s);

// update psi
// update r

// Check convergence
// and return if done

if (toBool(cp <= rsd_sqg)) {
n_count = k; return;

}

b = Real(cp) / Real(c);

pls] = r + b*p; // update p
}
n_count = MaxCG;
QDP_error_exit ("too many CG iterations: count = %d", n_count);

}

Fig. 4: Conjugate Gradients for Hermitian Matrix A in Chroma

QDP++/Chroma Efficiency

By optimising QDP++ as discussed previously and using high—performance Wilson Dslash

kernels in our linear operators we have managed to achieve high performance on worksta-
tions, Pentium 4 clusters and the QCDOC.

Fig. 5 shows some performance measurements with an even-odd preconditioned Wilson
Dirac operator on 4 nodes of the QCDOC. In this test we have used the assembler Dslash
from BAGEL. We show the performance of the Dslash operator, the even—odd Wilson Dirac
operator, the CG algorithm from Fig 4, and the performance of a super solver. The super
solver is a CG algorithm, where we have replaced our LinearOperator with direct calls to
the Dslash routine, and have fused the application of the Dirac Matrix with the computation
of the norm of the result where possible. The tests were carried out in single precision.

The Dslash routine (from BAGEL) was designed to amortise communications latency
at a local lattice size of 256 sites (V' = 4*). This can be seen in Fig. 5. The cost of the
additional vector operations needed to combine the Dslash applications into the even-odd
Wilson operator appear as the difference between the red and black bars.

We note that the difference between the CG algorithm of Fig 4. and the “super solver” is
about 2-3% of peak over the whole range of volumes. This shows that the overhead from
QDP++ expressions is very small.

% of Peak @ 360MHz

QCDOC QDP++/Chroma Wilson Benchmark
4 Nodes, Single Precision, EDRAM, Dslash and AXPY's from BAGEL

50 - D 1 h | | l | | | | 350
o slas _
| Even Odd Wilson
-l Optimised CG -

B General CG
= — 300

40 |-

N — 250

30 -]

i — 200

20 — 150
i —{ 100

10— I ol [L -

| |
16 32 64 128 256 512 1024
Local Lattice Volume (sites)

Mflop/s per node

Fig. 5: Single Precision Performance on the QCDOC (using BAGEL Dslash and AXPY’s)

Overlap Fermions in Chroma

QDP++ expressions and the structure of Chroma have made it ideal to try out algo-
rithmic ideas. We mention briefly some work we carried out to investigate the Overlap
operator:

We have implementations of the Overlap [9] operator with the sign function ap-
proximated as a partial fraction expansion of a rational polynomial whose coefficients
are given by Zolotarev’s theorem [10]. We calculate the coefficients on the fly [11].
Both single pass and double pass [12] implementations of the 4D operator exist. We
also have a 5D operator which expresses the Overlap operator as a continued fraction
(5DCF) [13].

On the inversion front we have tried most of the suggestions of the Wuppertal group
[14]. We have implemented the SUMR [14,15] solver algorithm — for single and mul-
tiple masses (a trivial extension) — as well as relaxed versions of both SUMR and CG.
Our fastest current algorithm for the 4D case, however, is the RelIGMRESR algorithm
discussed in the second paper of [14].

Our 5D algorithmic studies are still in infancy. Initial results suggest that inverting
the SDCF operator needs fewer applications of 5 Dy than the 4D nested CG inversion.
However, when projecting eigenvalues of 5 Dy the 5D method calls for more projec-
tions thus clouding the advantage. Currently we are looking for a good preconditioner
for the SDCF operator and investigating other 5D formulations. Even-odd precondi-
tioning may be possible, and using the GMRESR algorithm of [14,16] may allow for
other preconditioners based on approximate inverses of the operator.

Conclusions and Future Work

We have discussed the SciDAC software hierarchy and elements of the Chroma soft-
ware suite for lattice QCD. We have shown how QDP++ and Chroma may be opti-
mised in order to achieve high efficiency through template expressions and by inter-
facing cleanly with third—party high—performance libraries such as the assembly code
produced by BAGEL. We have also illustrated the ease of implementing new solver
algorithms.

Due to lack of space we have had to gloss over several other nice features of Chroma
and QDP++: the QIO framework and the XML I/O system were just briefly men-
tioned, as were the many applications already existing in the code—base. We have not
even touched upon our build system which uses the GNU Autotools allowing for easy
configuration and building.

We believe Chroma has a bright future. Already the LHPC and UKQCD collabo-
rations are using it for production calculations on a variety of clusters and it has been
ported and partially optimised for the QCDOC.

Our future plans include the implementation of various Hybrid Monte Carlo algo-
rithms (HMC, RHMC) and the provision of a full Dynamical Fermion code suite.

We should finish off by saying that QMP, QDP++ and Chroma are freely available
through anonymous CVS. The CVSROOT is:

:pserver:anonymous@cvs. jlab.org:/group/lattice/cvsroot

See [1] for details. QMP, QDP++ and Chroma are open source. Feel free to contribute...

References

[1] http://www jlab.org/~edwards/chroma

[2] http://www jlab.org/~dgr/lhpc

[3] http://www.]lqcd.org/scidac

[4] http://www.ph.ed.ac.uk/ukqcd

[5] C. McClendon, JLAB-THY-01-29, http://www jlab.org/~edwards/qcdapi/reports/dslash_p4.pdf

[6] Contact Peter Boyle: pab@phys.columbia.edu, paboyle @ph.ed.ac.uk

[7] http://www.lqcd.org/ildg/tiki—index.php?page=MetaData

[8] http://www.aldor.org

[9] R. Narayanan, H. Neuberger, Phys. Lett. B302, 62, (1993), hep—1at/9212019
[10] P. P. Petrushev, V. A. Popov, "Rational Approximation of Real Functions". Cambridge Univ. Press, Cambridge 1987
[11] A. D. Kennedy, hep—1at/0402038
[12] H. Neuberger, Int. J. Mod. Phys C10 (1999), 1051-1058, hep—1at/9811019

T—W Chiu, T-H Hsieh, Phys. Rev. E68 (2003) 066704, hep—1at/0306025

[13] A. Borici, et al. Nucl. Phys. Proc. Suppl. 106(2002) 757-759, hep—lat/0110070, U. Wenger, hep—1at/0403003
[14] G. Arnold. et. al. hep—1at/0311025, N. Cundy et. al. hep—1at/0405003
[15] C. F. Jagels, L. Reichel, Numerical Linear Algebra with Applications, Vol1(6),555-570 (1994)
[16] H. van der Vorst, C. Vuik, Numerical Linear Algebra with Applications, Voll(4), 369-386, 1994

